4.7 Article

Gold recycling and enrichment beneath volcanoes: A case study of Tolbachik, Kamchatka

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 437, 期 -, 页码 35-46

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2015.12.034

关键词

volcano; eruption; native gold; epithermal veins; crustal assimilation; ore recycling

资金

  1. Australian Research Council [DP1092823, DP130100257]
  2. Australian Research Council [DP1092823] Funding Source: Australian Research Council

向作者/读者索取更多资源

Magmas supply metals to hydrothermal ore deposits, although typical arc basalts may be unable to produce a gold-rich ore-forming fluid, as such basalts rarely exceed 5 ppb Au. Consistent with this, the occurrence of native gold of magmatic origin is extremely rare, and only a few finds of micron-sized gold particles in unaltered basalts have been documented. Surprisingly, some lava flows and scoria cones of the historic basaltic eruptions of Tolbachik volcano (Kamchatka) are unusually gold-rich. Tolbachik basalts contain up to 11.6 ppb Au based on whole rock analyses, nuggets of gold (electrum) up to 900 mu m in size and native gold droplets up to 200 urn, plus numerous vapor-deposited gold crystals within fumarolic incrustations and directly on surfaces of basaltic lapilli. Our results demonstrate that the gold nuggets in Tolbachik basalt are of hydrothermal origin and were physically scavenged from epithermal veins hosted by country rocks during intrusion of mafic magmas. Depending on the melt temperature and/or time span of the melt-rock interaction, gold was ejected by the erupting volcano either in the form of abraded nuggets or liquid droplets, or was fully assimilated (dissolved) into the shallow long-lived magma chamber to provide a 4-fold increase in gold content over background concentration of 2.7 ppb Au, characteristic of mafic volcanic rocks in Kamchatka. Upon the end of the eruption, the continued discharge of volcanic vapors enriched in gold deposited abundant crystals of gold on cooling lava and scoria. Similar to Tolbachik, recycling of metals from prior accumulations (ore deposits) in the shallow crust may take place in other long-lived magma reservoirs, thus upgrading the gold and other metal contents and contributing to the ore-forming potential of a magma. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据