4.8 Article

Multifunctionalized Gold Sub-Nanometer Particles for Sensitizing Radiotherapy against Glioblastoma

期刊

SMALL
卷 17, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202006582

关键词

blood-brain barrier; glioblastoma; nanomaterials; radiotherapy; sub-nanometer particles

资金

  1. National Natural Science Foundation of China [51833007, 51690152, 21721005]
  2. National Key R&D Program of China [2019YFA0905603]

向作者/读者索取更多资源

The study demonstrates the potential advantages of the integrated pharmaceutics D-iGSNPs in treating glioblastoma, enhancing sensitivity to radiotherapy and achieving almost the same therapeutic effect as high-dose radiotherapy.
Glioblastoma is the most common lethal malignant intracranial tumor with a low 5-year survival rate. Currently, the maximal safe surgical resection, followed by high-dose radiotherapy (RT), is a standard treatment for glioblastoma. However, high-dose radiation to the brain is associated with brain injury and results in a high fatality rate. Here, integrated pharmaceutics (named D-iGSNPs) composed of gold sub-nanometer particles (GSNPs), blood-brain barrier (BBB) penetration peptide iRGD, and cell cycle regulator alpha -difluoromethylornithine is designed. In both simulated BBB and orthotopic murine GL261 glioblastoma models, D-iGSNPs are proved to have a beneficial effect on the BBB penetration and tumor targeting. Meanwhile, data from cell and animal experiments reveal that D-iGSNPs are able to sensitize RT. More importantly, the synergy of D-iGSNPs with low-dose RT can exhibit an almost equal therapeutic effect with that of high-dose RT. This study demonstrates the therapeutic advantages of D-iGSNPs in boosting RT, and may provide a facile approach to update the current treatment of glioblastoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据