4.8 Review

Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis

期刊

SMALL
卷 17, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202005092

关键词

2D; fuel cells; fuel oxidation reaction; oxygen reduction reaction; ultrathin

资金

  1. National Natural Science Foundation of China [51873136, 52073199]
  2. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [18KJA150008]
  3. Natural Science Foundation of Jiangsu Province [BK20181428]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

2D Pd-based nanomaterials have emerged as potential candidates for fuel cell electrocatalysts due to their high intrinsic activity, electron mobility, and easy surface functionalization. Creating Pd- and Pd-based architectures with large surface areas, low-coordinated atoms, and high density of defects and edges is a promising strategy to enhance the electrocatalytic performance of fuel cells.
Pd- and Pd-based catalysts have emerged as potential alternatives to Pt- and Pt-based catalysts for numerous electrocatalytic reactions, particularly fuel cell-related reactions, including the anodic fuel oxidation reaction (FOR) and cathodic oxygen reduction reaction (ORR). The creation of Pd- and Pd-based architectures with large surface areas, numerous low-coordinated atoms, and high density of defects and edges is the most promising strategy for improving the electrocatalytic performance of fuel cells. Recently, 2D Pd-based nanomaterials with single or few atom thickness have attracted increasing interest as potential candidates for both the ORR and FOR, owing to their remarkable advantages, including high intrinsic activity, high electron mobility, and straightforward surface functionalization. In this review, the recent advances in 2D Pd-based nanomaterials for the FOR and ORR are summarized. A fundamental understanding of the FOR and ORR is elaborated. Subsequently, the advantages and latest advances in 2D Pd-based nanomaterials for the FOR and ORR are scientifically and systematically summarized. A systematic discussion of the synthesis methods is also included which should guide researchers toward more efficient 2D Pd-based electrocatalysts. Lastly, the future outlook and trends in the development of 2D Pd-based nanomaterials toward fuel cell development are also presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据