4.8 Article

Electronic Modulation of Hierarchical Spongy Nanosheets toward Efficient and Stable Water Electrolysis

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Chemistry, Inorganic & Nuclear

Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation

Dongxu Yang et al.

Summary: Metal-organic frameworks (MOFs) show outstanding potential as highly-efficient electrocatalysts for oxygen evolution reaction (OER) due to their unique structural advantages, allowing for the construction of various nanostructures such as nanosheets, nanorods, polyhedrons, and porous frameworks.

COORDINATION CHEMISTRY REVIEWS (2021)

Article Chemistry, Multidisciplinary

Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion

Yulu Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Materials Science, Multidisciplinary

Systematic study of the influence of iR compensation on water electrolysis

L. Yu et al.

MATERIALS TODAY PHYSICS (2020)

Article Chemistry, Physical

CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution

Yaqing Yang et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2019)

Article Chemistry, Multidisciplinary

Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation

Fei-Long Li et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Scalable Synthesis of Bimetallic Phosphide Decorated in Carbon Nanotube Network as Multifunctional Electrocatalyst for Water Splitting

Dongxu Yang et al.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2019)

Article Chemistry, Multidisciplinary

Identification of Key Reversible Intermediates in Self-Reconstructed Nickel-Based Hybrid Electrocatalysts for Oxygen Evolution

Jianwen Huang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

A Nanosized CoNi Hydroxide@Hydroxysulfide Core-Shell Heterostructure for Enhanced Oxygen Evolution

Bin Wang et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Multidisciplinary

Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting

Xinchuan Du et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Structure Effects of 2D Materials on alpha-Nickel Hydroxide for Oxygen Evolution Reaction

Chenglong Luan et al.

ACS NANO (2018)

Review Chemistry, Multidisciplinary

Stable Metal-Organic Frameworks: Design, Synthesis, and Applications

Shuai Yuan et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting

Enlai Hu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis

Fei-Long Li et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Review Multidisciplinary Sciences

Combining theory and experiment in electrocatalysis: Insights into materials design

Zhi Wei Seh et al.

SCIENCE (2017)

Article Multidisciplinary Sciences

Ultrathin metal-organic framework array for efficient electrocatalytic water splitting

Jingjing Duan et al.

NATURE COMMUNICATIONS (2017)

Article Chemistry, Physical

Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting

Cuicui Du et al.

JOURNAL OF MATERIALS CHEMISTRY A (2017)

Article Electrochemistry

Understanding the Oxygen Evolution Reaction on a Two-Dimensional NiO2 Catalyst

Jeremie Zaffran et al.

CHEMELECTROCHEM (2017)

Article Chemistry, Multidisciplinary

3D Self-Supported Fe-Doped Ni2P Nanosheet Arrays as Bifunctional Catalysts for Overall Water Splitting

Yingjie Li et al.

ADVANCED FUNCTIONAL MATERIALS (2017)

Review Chemistry, Multidisciplinary

Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications

Jing Wang et al.

ADVANCED MATERIALS (2017)

Review Chemistry, Multidisciplinary

Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction

Lei Han et al.

ADVANCED MATERIALS (2016)

Article Chemistry, Multidisciplinary

The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation

Oscar Diaz-Morales et al.

CHEMICAL SCIENCE (2016)

Article Chemistry, Multidisciplinary

High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting

Liang-Liang Feng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Article Chemistry, Multidisciplinary

Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst

Minrui Gao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Chemistry, Multidisciplinary

An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen

Mary W. Louie et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)