4.6 Article

AN INTERIOR-POINT APPROACH FOR SOLVING RISK-AVERSE PDE-CONSTRAINED OPTIMIZATION PROBLEMS WITH COHERENT RISK MEASURES

期刊

SIAM JOURNAL ON OPTIMIZATION
卷 31, 期 1, 页码 1-29

出版社

SIAM PUBLICATIONS
DOI: 10.1137/19M125039X

关键词

risk averse; PDE-constrained optimization; risk measures; uncertainty quantification; stochastic optimization; interior-point methods; conditional value-at-risk; gamma convergence

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [188264188/GRK1754]
  2. DFG [SU 963/1-1]
  3. TopMath, a graduate program of the Elite Network of Bavaria, Germany
  4. TopMath, a graduate center of TUM Graduate School

向作者/读者索取更多资源

In the presence of uncertainty in engineering and natural science models, the incorporation of random parameters in partial differential equations is necessary. This leads to infinite-dimensional stochastic optimization problems, which often require the use of risk measures in the objective function. The proposed log-barrier risk measure method offers a novel approach to solving risk-averse PDE-constrained optimization problems.
The prevalence of uncertainty in models of engineering and the natural sciences necessitates the inclusion of random parameters in the underlying partial differential equations (PDEs). The resulting decision problems governed by the solution of such random PDEs are infinite dimensional stochastic optimization problems. In order to obtain risk-averse optimal decisions in the face of such uncertainty, it is common to employ risk measures in the objective function. This leads to risk-averse PDE-constrained optimization problems. We propose a method for solving such problems in which the risk measures are convex combinations of the mean and conditional value-at-risk (CVaR). Since these risk measures can be evaluated by solving a related inequality-constrained optimization problem, we suggest a log-barrier technique to approximate the risk measure. This leads to a new continuously differentiable convex risk measure: the log-barrier risk measure. We show that the log-barrier risk measure fits into the setting of optimized certainty equivalents of Ben-Tal and Teboulle and the expectation quadrangle of Rockafellar and Uryasev. Using the differentiability of the log-barrier risk measure, we derive first-order optimality conditions reminiscent of classical primal and primal-dual interior-point approaches in nonlinear programming. We derive the associated Newton system, propose a reduced symmetric system to calculate the steps, and provide a sufficient condition for local superlinear convergence in the continuous setting. Furthermore, we provide a \Gamma-convergence result for the log-barrier risk measures to prove convergence of the minimizers to the original nonsmooth problem. The results are illustrated by a numerical study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据