4.7 Article

3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 326, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2020.128781

关键词

3-D printing; Biopri nting; Magnetic nanoparticles; Soft actuators; Magnetic soft actuators; Actuators; 3-D printed helical coil

资金

  1. Witte Endowment

向作者/读者索取更多资源

This study developed soft magnetic helical coil actuators using embedded 3D printing techniques, achieving linear actuation of over 300% and bending actuation of over 80 degrees. The research also demonstrated that 3D printed helical coils with 10% iron oxide nanoparticles can be used as untethered soft robots capable of locomotion on inclines under an applied magnetic field.
Soft actuators have grown to be a topic of great scientific interest. As the fabrication of soft actuators with conventional microfabrication methods are tedious, expensive, and time consuming, employment of 3-D printing fabrication methods appears promising as they can simplify fabrication and reduce the production cost. Complex structures can be fabricated with 3-D printing such as helical coils that can achieve actuation performances, which otherwise would be impossible with simpler geometries. In this study, development of soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane (PDMS) was achieved with embedded 3-D printing techniques. Composites with three different weight ratios of 10 %, 20 %, and 30 % iron nanoparticles to PDMS were formulated. Using iron nanoparticles with the size of 15-20 nm helps preserve viscosity of the printing material low enough to print it with a small-bore needle (30-gauge, 180 micrometers inner diameter). The hydrogel support of Pluronic f-127 bath and the ability to maintain the ratio of the printed fiber's diameter to coil diameter about 0.25 resulted in the successful fabrication and release of fabricated helical coil structures. This enabled 3-D printed structures characterized as magnetic actuators to achieve linear and bending actuation of more than 300 % and 80 degrees respectively in the case of composites with 30 % iron oxide nanoparticles. Moreover, it was shown that the 3-D printed helical coils with 10 % iron oxide nanoparticles can be utilized as untethered soft robots capable of locomotion on 45 and 90 degrees inclines under an applied magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据