4.7 Article

SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 326, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2020.128801

关键词

Amorphous carbon; Tin oxide; Gas sensor; Room temperature

资金

  1. Basic Science Research Program through the National Research Foundation (NRF) of Korea - Ministry of Education [NRF-2019R1A6A1A11055660, -2016R1A6A1A03013422]
  2. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2019R1A2C1006193]

向作者/读者索取更多资源

Gas sensors were fabricated by decorating amorphous carbon layers on SnO2 nanowires, without the need for pretreatment or functionalization, and operated at room temperature. The amorphous carbon increased surface area and improved NO(2) gas sensing by providing electronic effects to the SnO2.
We fabricated gas sensors by decorating amorphous carbon layers on the surfaces of SnO2 nanowires. Pretreatment and functionalization were not required for the synthesis of the SnO2-based nanocomposite, requiring only short few-second processing times. A sensing mechanism is proposed to explain the room-temperature (24 degrees C) operation of the gas sensor. The amorphous carbon not only increased the surface area, but also provided electronic effects improving the NO(2 )gas sensing likely by supplying electrons to the SnO2 and/or changing the conducting channel width inside the SnO2 by carrier transfer. The optimized gas sensor, having high response and high selectivity, can be utilized for room-temperature NO2 gas sensing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据