4.7 Article

Membrane-based colorimetric flow-injection system for online free chlorine monitoring in drinking water

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 327, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2020.128905

关键词

Chlorine monitoring; Membrane-based colorimetric sensing system; Water treatment; Water disinfection; Interference-free

资金

  1. Griffith University
  2. Australian Research Council
  3. National Natural Science Foundation of China [21806080]

向作者/读者索取更多资源

A membrane-based colorimetric flow-injection system (MCFIS) is developed for online monitoring drinking water free chlorine residual levels, which provides accurate and reliable results in a rapid manner. The system's unique analytical features, such as interference-free monitoring and on-going calibration-free operation, give it a significant advantage over other systems for online FC monitoring applications.
The majority of water utilities currently employ the in-lab tests of the grabbed samples to determine the free chlorine (FC) residual levels. Under certain circumstances, such approaches are inadequate to timely and accurately reflect the dynamically changed FC residual levels, leading to inappropriate dosages. This work reports a uniquely configured membrane-based colorimetric flow-injection system (MCFIS) capable of accurately and reliably online monitoring drinking water FC residual levels in a rapid (1-5 min per measurement) fashion. The embedded gas-permeable membrane makes MCFIS an interference-free FC monitoring system. The developed pre-calibration strategy avoids the need for on-going calibration. The accuracy of the conventional analytical principles is almost exclusively determined by the absolute analytical signal value of one measurement data point, and any errors from such a single-data point measurement will be directly transferred to the result, which induces uncertainties, hence, poor accuracy and reliability. Differing distinctively from such conventional analytical principles, MCFIS quantifies chlorine concentration based on N, N-diethyl-p-phenylenediamine - Cl-2 colorimetric reaction-controlled membrane transport process that enables the determination of gaseous chlorine concentration according to multiple measurement data points to greatly enhance the accuracy and reliability. The inherent analytical features of this slope-based signal quantification principle, interference-free and on-going calibration-free empower MCFIS with an enormous superiority over other systems for online FC monitoring applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据