4.6 Article

EDTD-SC: An IoT Sensor Deployment Strategy for Smart Cities

期刊

SENSORS
卷 20, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/s20247191

关键词

smart city; sensor deployment; environmental monitoring; IoT; delaunay triangulation; coverage; end-to-end delay; network resilience; k-means; WSN

资金

  1. Deanship of Scientific Research at King Saud University [RG-1441-512]

向作者/读者索取更多资源

A smart city is a geographical area that uses modern technologies to facilitate the lives of its residents. Wireless sensor networks (WSNs) are important components of smart cities. Deploying IoT sensors in WSNs is a challenging aspect of network design. Sensor deployment is performed to achieve objectives like increasing coverage, strengthening connectivity, improving robustness, or increasing the lifetime of a given WSN. Therefore, a sensor deployment method must be carefully designed to achieve such objective functions without exceeding the available budget. This study introduces a novel deployment algorithm, called the Evaluated Delaunay Triangulation-based Deployment for Smart Cities (EDTD-SC), which targets not only sensor distribution, but also sink placement. Our algorithm utilizes Delaunay triangulation and k-means clustering to find optimal locations to improve coverage while maintaining connectivity and robustness with obstacles existence in sensing area. The EDTD-SC has been applied to real-world areas and cities, such as Midtown Manhattan in New York in the United States of America. The results show that the EDTD-SC outperforms random and regular deployments in terms of area coverage and end-to-end-delay by 29.6% and 29.7%, respectively. Further, it exhibits significant performance in terms of resilience to attacks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据