4.6 Article

A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling

期刊

SENSORS
卷 21, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/s21020340

关键词

overexertion injury; ergonomics; machine learning; lumbar moment; risk assessment; wearables; fatigue failure; lifting biomechanics

资金

  1. National Institutes of Health [R01EB028105]

向作者/读者索取更多资源

The study identified trunk IMU and pressure insoles as key sensors for accurately monitoring low back loading, with the potential to provide a practical, accurate, and automated way to monitor lumbar moments. Thigh or pelvis IMUs could be used as substitutes for the trunk IMU, but there was no practical substitute for the pressure insoles in achieving accurate lumbar load estimates in the real world.
(1) Background: Low back disorders are a leading cause of missed work and physical disability in manual material handling due to repetitive lumbar loading and overexertion. Ergonomic assessments are often performed to understand and mitigate the risk of musculoskeletal overexertion injuries. Wearable sensor solutions for monitoring low back loading have the potential to improve the quality, quantity, and efficiency of ergonomic assessments and to expand opportunities for the personalized, continuous monitoring of overexertion injury risk. However, existing wearable solutions using a single inertial measurement unit (IMU) are limited in how accurately they can estimate back loading when objects of varying mass are handled, and alternative solutions in the scientific literature require so many distributed sensors that they are impractical for widespread workplace implementation. We therefore explored new ways to accurately monitor low back loading using a small number of wearable sensors. (2) Methods: We synchronously collected data from laboratory instrumentation and wearable sensors to analyze 10 individuals each performing about 400 different material handling tasks. We explored dozens of candidate solutions that used IMUs on various body locations and/or pressure insoles. (3) Results: We found that the two key sensors for accurately monitoring low back loading are a trunk IMU and pressure insoles. Using signals from these two sensors together with a Gradient Boosted Decision Tree algorithm has the potential to provide a practical (relatively few sensors), accurate (up to r(2) = 0.89), and automated way (using wearables) to monitor time series lumbar moments across a broad range of material handling tasks. The trunk IMU could be replaced by thigh IMUs, or a pelvis IMU, without sacrificing much accuracy, but there was no practical substitute for the pressure insoles. The key to realizing accurate lumbar load estimates with this approach in the real world will be optimizing force estimates from pressure insoles. (4) Conclusions: Here, we present a promising wearable solution for the practical, automated, and accurate monitoring of low back loading during manual material handling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据