4.7 Article

Influences of sex, rhythm and generation on the obesogenic potential of erythromycin to Drosophila melanogaster

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 771, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.145315

关键词

AMPK; Insulin; Antibiotic; Obesogenic; Multigenerational exposure; Dysrhythmia

资金

  1. National Natural Science Foundation of China [21976138]
  2. Fundamental Research Funds for the Central Universities [22120180549]
  3. Foundation of State Key Laboratory of Pollution Control and Resource Reuse (Tongji University), China [PCRRE20011]

向作者/读者索取更多资源

The study shows that exposure to erythromycin can affect lipid metabolism, body weight, and circadian rhythm in Drosophila melanogaster, with differences observed between generations depending on sex, rhythm, and exposure generation.
Antibiotics are gaining attention due to their roles as emerging pollutants and environmental obesogens, yet several aspects between their environmental exposure and obesogenic influence on organisms remain poorly explored. Here, Drosophila melanogaster were exposed to erythromycin (ERY, 0.1 mu g/L) for three consecutive generations (F1 to F3). Body weight, circadian rhythm (represented by eclosion timing) and lipid metabolism were measured. ERY increased the size of lipid droplets in larvae of all three generations. It modestly inhibited body weight in adults that abnormally eclosed in the morning (AM adults) in the F1 and F2 generations, and the inhibition was less in adults that eclosed in the afternoon (PM adults). In contrast, it stimulated body weight in F3 adults. Notably. ERY promoted morning edosion of females. Combining the effects from F1 to F3, acyl-CoA oxidase (ACO) was commonly increased in AM female and male adults and also in PM female ones, while it was commonly decreased in PM male adults. Glucokinase (GCK) was commonly increased in both sexes of AM adults but decreased in PM male adults across generations. The IIS pathway showed a common up-regulation in the AM adults despite some differences between sexes, but it did not show any shared changes in the PM adults with dysrhythmia. The AMPK pathway was involved across generations without particular shared changes. Collectively, the effects of ERY on the key metabolites and enzymes in glucolipid metabolism and the genetic regulations depended on sex, rhythm and exposure generation. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据