4.7 Article

Changes in soil microbial communities in post mine ecological restoration: Implications for monitoring using high throughput DNA sequencing

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 749, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142262

关键词

eDNA; Soil microbial communities; Land degradation; Ecological restoration; Restoration genomics

资金

  1. Australian Research Council Industrial Transformation Training Centre for Mine Site Restoration [ICI150100041]
  2. Pawsey Supercomputing Centre
  3. Australian Government
  4. Government ofWestern Australia

向作者/读者索取更多资源

The ecological restoration of ecosystem services and biodiversity is a key intervention used to reverse the impacts of anthropogenic activities such as mining. Assessment of the performance of restoration against completion criteria relies on biodiversity monitoring. However, monitoring usually overlooks soil microbial communities (SMC), despite increased awareness of their pivotal role in many ecological functions. Recent advances in cost, scalability and technology has led to DNA sequencing being considered as a cost-effective biological monitoring tool, particularly for otherwise difficult to survey groups such as microbes. However, such approaches for monitoring complex restoration sites such as post-mined landscapes have not yet been tested. Here we examine bacterial and fungal communities across chronosequences of mine site restoration at three locations in Western Australia to determine if there are consistent changes in SMC diversity, community composition and functional capacity. Although we detected directional changes in community composition indicative of microbial recovery, these were inconsistent between locations and microbial taxa (bacteria or fungi). Assessing functional diversity provided greater understanding of changes in site conditions and microbial recovery than could be determined through assessment of community composition alone. These results demonstrate that high-throughput amplicon sequencing of environmental DNA (eDNA) is an effective approach for monitoring the complex changes in SMC following restoration. Future monitoring of mine site restoration using eDNA should consider archiving samples to provide improved understanding of changes in communities over time. Expansion to include other biological groups (e.g. soil fauna) and substrates would also provide a more holistic understanding of biodiversity recovery. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据