4.7 Article

Ammonium aggravates salt stress in plants by entrapping them in a chloride over-accumulation state in an NRT1.1-dependent manner

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 746, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.141244

关键词

Cl- toxicity; Ammonium; Salt stress; NRT1.1; Salt-water intrusion

资金

  1. Natural Key R&D Program of China [2016YFD0200103]
  2. Natural Science Foundation of China [31622051, 31670258]

向作者/读者索取更多资源

Global climate change has exacerbated flooding in coastal areas affected by soil salinization. Ammonium(NH4+) is the predominant form of nitrogen in flooded soils, but the role played by NH4+ in the plant response to salt stress has not been fully clarified. We investigated the responses of Arabidopsis thaliana, Oryza sativa, and Nicotiana benthamiana plants fed with NH4+. All species were hypersensitive to NaCl stress and accumulated more Cl- and less Na+ than those fed with NO3-. Further investigation of A. thaliana indicated that salt hypersensitivity induced by the presence of NH4+ was abolished by removing the Cl- but was not affected by the removal of Na+, suggesting that excess accumulation of Cl- rather than Na+ is involved in NH4+-conferred salt hypersensitivity. The expression of nitrate transporter NRT1.1 protein was also up-regulated by NH4+ treatment, which increased root Cl- uptake due to the Cl- uptake activity of NRT1.1 and the absence of uptake competition from NO3-. Knockout of NRT1.1 in plants decreased their root Cl- uptake and retracted the NH4+-conferred salt hypersensitivity. Our findings revealed that NH4+-aggravated salt stress in plants is associated with Cl- over-accumulation through the up-regulation of NRT1.1-mediated Cl- uptake. These findings suggest the significant impact of Cl- toxicity in flooded coastal areas, an issue of ecological significance. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据