4.7 Article

Gain in carbon: Deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 746, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.141057

关键词

Negative priming effects; Structural equation modeling; Microbial diversity; Bacterial-fungal community interaction; Soil pH; Silt-clay

资金

  1. National Science Foundation of China [41671233]
  2. Natural Science Foundation of Hebei Province [D2019111043]

向作者/读者索取更多资源

The biochar-induced priming effects (PEs) were investigated by applying maize straw (C4) derived biochar to eight C3 soils, with a gradient of pH and a sub-gradient of soil organic carbon (SOC). To decipher the physicochemical and microbial mechanisms, we adopted C-isotopic analysis, high-throughput sequencing and multivariate statistical analyses such as random forest (RF) and structure equation modeling (SEM). Negative and neutral PEs were observed up to -48.5% of relative PEs during 28 days of incubation. All the acidic soils exhibited negative PEs, so as the neutral Alfisol and alkaline Aridisol, which had a suppression effect on SOC mineralization accounted for -29.4 and -32.0% of relative PEs. Among all abiotic factors, soil silt-clay fraction and the initial pH values play the most important roles in PEs determination through directly inhibiting PEs by protection SOC and indirectly shaping bacterial communities respectively. On the whole community level, biochar treatments defined much less microbiome (0.6% and 1.2% for variance of bacterial and fungal community) than soil types (93.5% and 83.3% respectively) across soils. Thus, the initial community (i.e., bacteria alpha-diversity and copiotrophic bacteria as revealed by SEM) of different soils might be more critical for PE prediction. Furthermore, co-occurrence network analysis indicated out-competition of fungi by bacteria with increase of mutual exclusion and decrease of fungal occupancy. This could exacerbate negative PEs in soils with lower bacterial alpha-diversity and dominance by copiotrophys due to less functional complementary for recalcitrant SOC decomposition. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据