4.7 Article

Identification and quantification of chloramines, bromamines and bromochloramine by Membrane Introduction Mass Spectrometry (MIMS)

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 751, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142303

关键词

Membrane Introduction Mass Spectrometry; Drinking water; Chloramine; Bromamine; Disinfection; Oxidation

资金

  1. Curtin University
  2. Curtin Water Quality Research Centre
  3. China Scholarship Council (CSC)

向作者/读者索取更多资源

A Membrane Introduction Mass Spectrometry (MIMS) method was developed to differentiate and quantify chlorinated and brominated-amines in drinking water during chloramination. The method successfully monitored and quantified different compounds in water samples simulating a disinfection scenario.
A Membrane Introduction Mass Spectrometry (MIMS) method was developed to differentiate and quantify the different chlorinated and brominated-amines, present in drinking water during chloramination. The representative mass to charge ratios (m/z) of 53, 85, 97, 175 and 131 corresponding to the mass of the parent compounds were selected to monitor NH2Cl, NHCl2, NH2Br, NHBr2 and NHBrCl and the detection limits were found to be 0.034, 0.034, 0.10, 0.12 and 0.36 mg/L as Cl-2, respectively. NHCl2, NHBr2 and NHBrCl fragments interfere with the analysis/quantification of NH2Cl and NH2Br via protonation reactions at hot metal surfaces inside the mass spectrometer. To accurately quantify NH2Cl or NH2Br in mixtures of NH2Cl/NHCl2 or NH2Br/NHBr2, the interference from NHCl2 or NHBr2 was subtracted to the signal of the parent compound. If NHBrCl is present, NH2Br and NH2Cl cannot be accurately quantified since the interference from the NHBrCl fragment cannot be distinguished from the signal of the parent compound. Under drinking water conditions, the interference from NHBrCl on NH2Cl was negligible. The different halamines were monitored and quantified for the first time in two surface waters and one seawater that were chloraminated to mimic a realistic disinfection scenario. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据