4.7 Article

Active flutter control of the wind turbines using double-pitched blades

期刊

RENEWABLE ENERGY
卷 163, 期 -, 页码 2081-2097

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.10.122

关键词

Horizontal axis wind turbines; Active vibration control; Double-pitched blade; Classical flutter

资金

  1. State's Key Project of Research and Development Plan [2016YFE0127900]
  2. National Natural Science Foundation of China [51908209]
  3. Hunan Provincial Natural Science Foundation of China [2020JJ5052]
  4. Aarhus University Research Foundation under the AUFF Assistant Professor Starting Grant [AUFF-E-2017-7-20]

向作者/读者索取更多资源

A new double-pitched blade configuration is proposed to enhance the flutter suppressing capability of wind turbine blades by controlling the rotation of the blade tip. Simulation studies and parametric optimizations revealed the effects of tip part length and chordwise location on flutter control performance.
Classical flutter of a wind turbine blade is a concerned issue to hinder the wind utilization to a large extent. Recent predictions showed a decreasing flutter margin (the ratio of flutter speed to rated rotor speed) with the increase in wind turbine size. To address this issue, a new blade configuration called the double-pitched blade is proposed and analytically investigated for its potential to enhance the flutter suppressing capability of modern large-size wind turbine blades. This new blade comprise an inner part and a tip part, where the tip part can rotate (or pitch) independently with respect to the inner part through a tip actuator commanded by a feedback control law. The aerodynamic loads of blade tip due to the actively controlled rotation of the tip part provide a torque on the inner part, which provides damping for the torsional mode of the wind turbine blade. The effectiveness of this new double-pitched blade for suppressing flutter is verified through a simulation study conducted on a 907-DOF aero-servo-elastic wind turbine model. Parametric studies are performed on two main design parameters, i.e. the length of the tip part and the associated chordwise location of tip shaft with respected to the blade cross section, and flutter control performance are obtained by numerical optimization process. Simulation results show the optimal length of tip part is around 3:3% of blade length, and the associated chordwise location of tip shaft is around 45%of chord length, the flutter amplitude of the conventional blade can be mitigated to around 4%using this double-pitched blade. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据