4.7 Article

Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors

期刊

RENEWABLE ENERGY
卷 163, 期 -, 页码 276-287

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.08.092

关键词

Biomass conversion; Chemical pretreatment; Miscanthus grass; Activated carbon; Supercapacitor

资金

  1. Agriculture and Food Research Initiative Competitive Grant from the USDA National Institute of Food and Agriculture [2015-67021-22995]
  2. Scientific and Technological Research Council of Turkey (TUBITAK) under BIDEB-2219 Postdoctoral Research Program

向作者/读者索取更多资源

The study examined the impact of chemical pretreatment time on the activated carbons derived from Miscanthus grass biomass. By controlling the pretreatment duration, the microstructure, chemistry, and active functional groups were adjusted, leading to improved electrochemical performance of the activated carbons. The optimal KOH pretreatment resulted in high specific capacitance, cycling stability, specific energy, and specific power, highlighting the importance of pore volume, cellulose content, C/O ratio, and surface chemistry on the electrochemical performance.
For a better process and property control, the effect of chemical pretreatment time on the chemistry and electrochemical performance of activated carbons derived from Miscanthus grass biomass was exam-ined. The microstructure, chemistry and active functional groups were controlled by tuning the pretreatment duration, which provided the removal of certain concentrations of hemicellulose and lignin, as well as, pore development at the initial stage. The optimal KOH pretreatment (12-18 h) resulted in interconnected pore structure, rich oxygen content (18-21 at.%), significant changes in their chemistry and functional groups, and a sheet-like morphology. A high specific capacitance up to 188 F/g and a high cycling stability of 85-91% retention (after 1000-2500 cycles) at 0.1 A/g were achieved. The optimization of the pretreatment time also resulted in high specific energy (8.0 W h/kg) and specific power (377 W/ kg) at 0.5 A/g. The micro/mesopore volume, cellulose content, C/O ratio, and surface chemistry were identified to be major contributors to the electrochemical performance as a result of enhanced electroadsorption, double layer formation, and rapid ion transport. This understanding creates a simple and cost-effective route for controlling the pore network and chemistry, as well as, the resultant performance of the porous activated carbon supercapacitor electrodes. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据