4.7 Article

Experimental study on thermal runaway and vented gases of lithium-ion cells

期刊

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
卷 144, 期 -, 页码 186-192

出版社

ELSEVIER
DOI: 10.1016/j.psep.2020.07.028

关键词

Lithium-ion battery; Temperature; Thermal runaway; Flammable gases

向作者/读者索取更多资源

Lithium-ion (Li-ion) batteries have become more prevalent in mining to power a wide range of devices from handheld tools to mobile mining equipment. However, the benefits associated with using Li-ion batteries may come with a higher risk of a fire or an explosion. The major cause for a Li-ion battery fire is thermal runaway. If unmitigated, a thermal runaway can lead to cell rupture and the venting of toxic and highly flammables gases. Those flammable gases can cause a fire or explosion if ignited. In this study, researchers from the National Institute for Occupational Safety and Health (NIOSH) conducted experiments to monitor the heating of a Li-ion cell with different battery chemistries using an accelerating rate calorimeter (ARC). Inside the ARC, the cell was exposed to increasing temperatures until it reached a thermal runaway. Samples of vented gases after the thermal runaway were collected and analyzed using a gas chromatograph. Major gas components were identified, and their concentrations were measured. The results of this study can be useful in reducing the hazard of Li-ion battery fires. Published by Elsevier B.V. on behalf of Institution of Chemical Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据