4.8 Article

Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2015551118

关键词

structural color; Monte Carlo; multiple scattering; engineering design

资金

  1. BASF Corporation
  2. BASF Northeast Research Alliance
  3. Harvard Materials Research Science and Engineering Center under NSF [DMR-2011754]
  4. NSF Graduate Research Fellowship [DGE-1144152]
  5. NSF [1541959]

向作者/读者索取更多资源

Disordered nanostructures can exhibit angle-independent structural colors, potentially replacing dyes in some applications. Designing specific colors in nanostructures is challenging, but can be achieved through modeling and optimization approaches. Developing accurate predictive models for disordered nanostructures with multiple scattering is key to engineering design of structural colors for various applications.
Disordered nanostructures with correlations on the scale of visible wavelengths can show angle-independent structural colors. These materials could replace dyes in some applications because the color is tunable and resists photobleaching. However, designing nanostructures with a prescribed color is difficult, especially when the application-cosmetics or displays, for example-requires specific component materials. A general approach to solving this constrained design problem is modeling and optimization: Using a model that predicts the color of a given system, one optimizes the model parameters under constraints to achieve a target color. For this approach to work, the model must make accurate predictions, which is challenging because disordered nanostructures have multiple scattering. To address this challenge, we develop a Monte Carlo model that simulates multiple scattering of light in disordered arrangements of spherical particles or voids. The model produces quantitative agreement with measurements when we account for roughness on the surface of the film, particle polydispersity, and wavelength-dependent absorption in the components. Unlike discrete numerical simulations, our model is parameterized in terms of experimental variables, simplifying the connection between simulation and fabrication. To demonstrate this approach, we reproduce the color of the male mountain bluebird (Sialia currucoides) in an experimental system, using prescribed components and a microstructure that is easy to fabricate. Finally, we use the model to find the limits of angle-independent structural colors for a given system. These results enable an engineering design approach to structural color for many different applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据