4.2 Article

Feed rate control in robotic bone drilling process

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954411920975890

关键词

Bone drilling; orthopaedic surgery; handheld-medical robot; feed rate control; thrust force feedback

向作者/读者索取更多资源

The bone drilling process is characterized by key parameters such as feed rate and drill speed, controlled manually by surgeons or automatically for optimal results. This study introduces an original feed rate control algorithm for orthopaedic surgery, aiming to minimize drilling time and improve hole quality while reducing the risk of complications.
The bone drilling process is characterised by various parameters, the most important of which are the feed rate (mm/s) and the drill speed (rpm). They highly reflect the final effects and results of the drilling process, such as mechanical and thermal damages of bone tissue and hole quality. During manual drilling, these parameters are controlled by the surgeon based on his practical skills. But automatic drilling can assure an optimal result of the manipulation where such parameters are under control. During bicortical automatic bone drilling such a process consists of several stages: searching the contact with the first cortex, cortex drilling and automatic stop; searching the contact with the second cortex, cortex drilling and automatic stop; drill bit extraction. This work presents a way to control the feed rate during different stages of the bone drilling process (an original feed rate control algorithm) using the orthopaedic drilling robot (ODRO). The feed rate control is based on a proposed algorithm created and realised by specific software. During bicortical bone drilling process the feed rate takes various values in any stage in the range 0.5-6 mm/s. These values depend on drill bit position and real time force sensor data. The novelty of this work is the synthesis of an original feed rate control algorithm to solve the main problems of bone drilling in orthopaedic surgery - minimisation the drilling time (the heat generation); eliminating of the drill bit slip at the first (near) cortex and the drill bit bending at the second (far) cortex; minimising the risk of micro cracks which causes Traumatic Osteonecrosis; improving hole quality of the drilled holes; eliminating of the drill bit slip and the drill bit bending at the second cortex; minimising the value of the second cortex drill bit penetration by bicortical bone drilling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据