4.6 Article

Morphometrics and processing yield of Cucumaria frondosa (Holothuroidea) from the St. Lawrence Estuary, Canada

期刊

PLOS ONE
卷 16, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0245238

关键词

-

资金

  1. Fisheries Science Collaborative Program, Fisheries and Oceans Canada [4ST-217]

向作者/读者索取更多资源

The study investigated the stock-specific mass and length recovery rates of Canadian sea cucumber Cucumaria frondosa, revealing variations in dry product mass based on depth and season. The results showed that gutted mass was the most reliable metric for predicting processed body mass and estimating size.
Sea cucumber Cucumaria frondosa have highly variable whole body mass and length, and are usually sold to Asian markets as dried gutted body wall. Understanding the relation between size and yield of dry product is essential for resource conservation and for economic purposes. In this study, stock-specific mass and length recovery rates were estimated for C. frondosa captured by dredging or diving at various depths and seasons on the South shore of the St. Lawrence Estuary, along Gaspe ' Peninsula, and processed in a commercial plant. The processing yield in dry product mass per sea cucumber was more than 1.5 times larger for sea cucumbers collected at 26-47 m depth compared to those collected at 9-16 m depth. Within each strata, there was little variation in the processed body mass, seasonally or spatially. Recovery rates based on gutted mass for this stock (13.4-14.5%) varied little among depths and seasons, despite observed seasonal and bathymetric variation in reproductive status. In contrast, recovery rates based on whole body mass and length were highly variable both seasonally and spatially. Stress related to dredging or post-capture handling induced important variable body contraction and water content, leading to variation in body length, mass and shape of sea cucumbers having the same processed body mass. Gutted mass was the best metric to predict processed body mass and to estimate size whereas whole body length was the least reliable. New stock-specific information on variability of body mass, length, and recovery rates induced by capture, and on seasonal and bathymetric variation in reproductive status and processing yields will be used for the design of future stock assessment surveys, and for stock conservation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据