4.7 Article

Comparative effects of ascobin and glutathione on copper homeostasis and oxidative stress metabolism in mitigation of copper toxicity in rice

期刊

PLANT BIOLOGY
卷 23, 期 -, 页码 162-169

出版社

WILEY
DOI: 10.1111/plb.13222

关键词

Antioxidant enzymes; ascobin; copper pollution; glutathione; mineral homeostasis; phytotoxicity

向作者/读者索取更多资源

The study compared the effects of ascorbic acid (ASC) and glutathione (GSH) in alleviating copper (Cu) toxicity in rice, finding that ASC was more effective in restricting Cu2+ accumulation. ASC also better balanced Ca2+ and Mg2+, protected photosynthetic pigments, and activated antioxidant defense mechanisms compared to GSH.
Copper (Cu) pollution of agricultural land is a major threat to crop production. Exogenous chemical treatment is an easily accessible and rapid approach to remediate metal toxicity, including Cu toxicity in plants. We compared the effects of ascobin (ASC; ascorbic acid:citric acid at 2:1) and glutathione (GSH) in mitigation of Cu toxicity in rice. Plants subjected to Cu stress displayed growth inhibition and biomass reduction, which were connected to reduced levels of chlorophylls, RWC, total phenolic compounds, carotenoids and Mg2+. Increased accumulation of ROS and malondialdehyde indicated oxidative stress in Cu-stressed plants. However, application of ASC or GSH minimized the inhibitory effects of Cu stress on rice plants by restricting Cu2+ uptake and improving mineral balance, chlorophyll content and RWC. Both ASC and GSH pretreatments reduced levels of ROS and malondialdehyde and improved activities of antioxidant enzymes, suggesting their roles in alleviating oxidative damage. A comparison on the effects of ASC and GSH under Cu stress revealed that ASC was more effective in restricting Cu2+ accumulation (69.5% by ASC and 57.1% by GSH), Ca2+ and Mg2+ homeostasis, protection of photosynthetic pigments and activation of antioxidant defence mechanisms [catalase (110.4%), ascorbate peroxidase (76.5%) and guaiacol peroxidase (39.0%) by ASC, and catalase (58.9%) and ascorbate peroxidase (59.9%) by GSH] in rice than GSH, eventually resulting in better protection of ASC-pretreated plants against Cu stress. In conclusion, although ASC and GSH differed in induction of stress protective mechanisms, both were effective in improving rice performance in response to Cu phytotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据