4.4 Article

Nonlinear bubble competition of the multimode ablative Rayleigh-Taylor instability and applications to inertial confinement fusion

期刊

PHYSICS OF PLASMAS
卷 27, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0023541

关键词

-

资金

  1. U.S. DOE FES Grant [DE-SC0014318, DE-SC0020229]
  2. U.S. NASA [80NSSC18K0772]
  3. U.S. NNSA Award [DE-NA0003856, DE-NA0003914]
  4. U.S. DOE [DE-SC0019329]
  5. National Natural Science Foundation of China (NSFC) [11975056]
  6. Science Challenge Project (SCP) [TZ2016005]
  7. Strategic Priority Research Program of Chinese Academy of Sciences [XDA25050400]
  8. NSFC [11772324, 11621202]
  9. SCP [TZ2016001]
  10. National Energy Research Scientific Computing Center (NERSC) [DE-AC02-05CH11231]
  11. agency of the U.S. Government
  12. U.S. Department of Energy (DOE) [DE-SC0020229, DE-SC0019329] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The self-similar nonlinear evolution of the multimode ablative Rayleigh-Taylor instability (RTI) and the ablation-generated vorticity effect are studied for a range of initial conditions. We show that, unlike classical RTI, the nonlinear multimode bubble-front evolution remains in the bubble competition regime due to ablation-generated vorticity, which accelerates the bubbles, thereby preventing a transition into the bubble-merger regime. We develop an analytical bubble competition model to describe the linear and nonlinear stages of ablative RTI. We show that vorticity inside the multimode bubbles is most significant at small scales with large initial perturbation. Since these small scales persist in the bubble competition regime, the self-similar growth coefficient alpha (b) can be enhanced by up to 30% relative to ablative bubble competition without vorticity effects. We use the ablative bubble competition model to explain the hydrodynamic stability boundary observed in OMEGA low-adiabat implosion experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据