4.7 Article

Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at √s=13 TeV

期刊

PHYSICS LETTERS B
卷 812, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.physletb.2020.135992

关键词

CMS; Physics; SM; ZZ; VBS; aQGC

资金

  1. BMBWF (Austria)
  2. FWF (Austria)
  3. FNRS (Belgium)
  4. FWO (Belgium)
  5. CNPq (Brazil)
  6. CAPES (Brazil)
  7. FAPERJ (Brazil)
  8. FAPERGS (Brazil)
  9. FAPESP (Brazil)
  10. MES (Bulgaria)
  11. CERN (China)
  12. CAS (China)
  13. MOST (China)
  14. NSFC (China)
  15. COLCIENCIAS (Colombia)
  16. MSES (Croatia)
  17. CSF (Croatia)
  18. RPF (Cyprus)
  19. SENESCYT (Ecuador)
  20. MoER (Estonia)
  21. ERC IUT (Estonia)
  22. PUT (Estonia)
  23. ERDF (Estonia)
  24. Academy of Finland (Finland)
  25. MEC (Finland)
  26. HIP (Finland)
  27. CEA (France)
  28. CNRS/IN2P3 (France)
  29. BMBF (Germany)
  30. DFG (Germany)
  31. HGF (Germany)
  32. GSRT (Greece)
  33. NKFIA (Hungary)
  34. DAE (India)
  35. DST (India)
  36. IPM (Iran)
  37. SFI (Ireland)
  38. INFN (Italy)
  39. MSIP (Republic of Korea)
  40. NRF (Republic of Korea)
  41. MES (Latvia)
  42. LAS (Lithuania)
  43. MOE (Malaysia)
  44. UM (Malaysia)
  45. BUAP (Mexico)
  46. CINVESTAV (Mexico)
  47. CONACYT (Mexico)
  48. LNS (Mexico)
  49. SEP (Mexico)
  50. UASLP-FAI (Mexico)
  51. MOS (Montenegro)
  52. MBIE (New Zealand)
  53. PAEC (Pakistan)
  54. MSHE (Poland)
  55. NSC (Poland)
  56. FCT (Portugal)
  57. JINR (Dubna)
  58. MON (Russia)
  59. ROSATOM (Russia)
  60. RAS (Russia)
  61. RFBR (Russia)
  62. NRC KI (Russia)
  63. MESTD (Serbia)
  64. SEIDI (Spain)
  65. CPAN (Spain)
  66. PCTI (Spain)
  67. FEDER (Spain)
  68. MoSTR(Sri Lanka)
  69. Swiss Funding Agencies (Switzerland)
  70. MST (Taipei)
  71. ThEPCenter (Thailand)
  72. IPST (Thailand)
  73. STAR (Thailand)
  74. NSTDA (Thailand)
  75. TUBITAK (Turkey)
  76. TAEK (Turkey)
  77. NASU (Ukraine)
  78. STFC (United Kingdom)
  79. DOE (USA)
  80. NSF (USA)
  81. Marie-Curie programme (European Union)
  82. European Research Council (European Union) [675440, 752730, 765710]
  83. Horizon 2020 Grant (European Union) [675440, 752730, 765710]
  84. Leventis Foundation
  85. A.P. Sloan Foundation
  86. Alexander von Humboldt Foundation
  87. Belgian Federal Science Policy Office
  88. Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium)
  89. Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
  90. F.R.S.-FNRS (Belgium) under the Excellence of Science -EOS -be.h project [30820817]
  91. FWO (Belgium) under the Excellence of Science -EOS -be.h project [30820817]
  92. Beijing Municipal Science AMP
  93. Technology Commission [Z191100007219010]
  94. Ministry of Education, Youth and Sports(MEYS) of the Czech Republic
  95. Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy [EXC 2121, 390833306]
  96. Lendulet (Momentum) Programme
  97. Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences
  98. New National Excellence Program UNKP
  99. NKFIA (Hungary) [123842, 123959, 124845, 124850, 125105, 128713, 128786, 129058]
  100. Council of Science and Industrial Research, India
  101. Italian Ministry for Foreign Affairs and International Cooperation (MAECI/MFA) (Italy-Serbia) [RS19MO06]
  102. HOMING PLUS programme of the Foundation for Polish Science
  103. European Union, Regional Development Fund
  104. Mobility Plus programme of the Ministry of Science and Higher Education
  105. National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406]
  106. National Priorities Research Program by Qatar National Research Fund
  107. Ministry of Science and Education (Russia) [14.W03.31.0026]
  108. Tomsk Polytechnic University Competitiveness Enhancement Program (Russia)
  109. Nauka Project (Russia) [FSWW2020-0008]
  110. Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu [MDM-2015-0509]
  111. Programa Severo Ochoa del Principado de Asturias
  112. Thalis programme - EU-ESF
  113. Aristeia programme - EU-ESF
  114. Greek NSRF
  115. Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand)
  116. Chulalongkorn University (Thailand)
  117. Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand)
  118. Kavli Foundation
  119. Nvidia Corporation
  120. SuperMicro Corporation
  121. Welch Foundation [C1845]
  122. Weston Havens Foundation (USA)
  123. Serbian Ministry for Foreign Affairs and International Cooperation (MAECI/MFA) (Italy-Serbia) [RS19MO06]
  124. STFC [ST/S000739/1] Funding Source: UKRI

向作者/读者索取更多资源

The study presents evidence for electroweak production of two jets in association with two Z-bosons and sets constraints on anomalous quartic gauge couplings. Using data collected with the CMS detector in proton-proton collisions, the study measures the production of two jets with Z-bosons and reports total cross sections for jj production. Limits on anomalous quartic gauge couplings are also derived based on field theory operators.
Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z-bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at root s = 13 TeVcollected with the CMS detector in 2016-2018, and corresponding to an integrated luminosity of 137 fb(-1). The search is performed in the fully leptonic final state ZZ -> lll'l', where l, l' = e, mu. The EW production of two jets in association with two Zbosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is sigma(EW)(pp -> ZZjj -> lll'l'jj) = 0.33(-0.10)(+0.11)(stat)(-0.03)(+0.04)(syst) fbin the most inclusive volume, in agreement with the standard model prediction of 0.275 +/- 0.021fb. Measurements of total cross sections for jj production in association with two Zbosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据