4.8 Article

Coherent Spin-Photon Interface with Waveguide Induced Cycling Transitions

期刊

PHYSICAL REVIEW LETTERS
卷 126, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.126.013602

关键词

-

资金

  1. Danmarks Grundforskningsfond (Hy-Q Center for Hybrid Quantum Networks) [DNRF 139]
  2. H2020 European Research Council (ERC) (SCALE)
  3. Styrelsen for Forskning og Innovation (FI) [5072-00016B QUANTECH]
  4. European Union's Horizon 2020 research and innovation programme [820445]
  5. Deutsche Forschungsgemeinschaft (DFG) [TRR 160]
  6. Bundesministerium fur Bildung und Forschung [BMBF - Q.Link.X 16KIS0867]
  7. Deutsch-Franzosische Hochschule [DFH/UFA CDFA-05-06]
  8. SNF [200020_175748]
  9. NCCR QSIT
  10. European Unions Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant [840453]
  11. Marie Curie Actions (MSCA) [840453] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Solid-state quantum dots show promise as efficient light-matter interfaces connecting internal spin degrees of freedom to emitted photon states. However, selection rules currently prevent the combination of efficient spin control and optical cyclicity in this platform. By utilizing a photonic crystal waveguide, researchers have experimentally demonstrated optical cyclicity while achieving high fidelity spin initialization and coherent optical spin control, paving the way for scalable multiphoton entanglement generation and on-chip spin-photon gates.
Solid-state quantum dots are promising candidates for efficient light-matter interfaces connecting internal spin degrees of freedom to the states of emitted photons. However, selection rules prevent the combination of efficient spin control and optical cyclicity in this platform. By utilizing a photonic crystal waveguide we here experimentally demonstrate optical cyclicity up to approximate to 15 through photonic state engineering while achieving high fidelity spin initialization and coherent optical spin control. These capabilities pave the way towards scalable multiphoton entanglement generation and on-chip spin-photon gates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据