4.8 Article

Reversible Trapping of Colloids in Microgrooved Channels via Diffusiophoresis under Steady-State Solute Gradients

期刊

PHYSICAL REVIEW LETTERS
卷 125, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.125.248002

关键词

-

资金

  1. EPSRC [EP/M027341/1, EP/S013865/1]
  2. Santander Mobility Award
  3. EPSRC [EP/S013865/1, EP/M027341/1] Funding Source: UKRI

向作者/读者索取更多资源

The controlled transport of colloids in dead-end structures is a key capability that can enable a wide range of applications, such as biochemical analysis, drug delivery, and underground oil recovery. This Letter presents a new trapping mechanism that allows the fast (i.e., within a few minutes) and reversible accumulation of submicron particles within dead-end microgrooves by means of parallel streams with different salinity level. For the first time, particle focusing in dead-end structures is achieved under steady-state gradients. Confocal microscopy analysis and numerical investigations show that the particles are trapped at a flow recirculation region within the grooves due to a combination of diffusiophoresis transport and hydrodynamic effects. Counterintuitively, the particle velocity at the focusing point is not vanishing and, hence, the particles are continuously transported in and out of the focusing point. The accumulation process is also reversible and one can cyclically trap and release the colloids by controlling the salt concentration of the streams via a flow switching valve.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据