4.5 Article

Fabrication of Zn-MOF-74/polyacrylamide coated with reduced graphene oxide (Zn-MOF-74/rGO/PAM) for As(III) removal

出版社

ELSEVIER
DOI: 10.1016/j.physe.2020.114377

关键词

Arsenic adsorption; Metal-organic framework; Reduced graphene oxide; Polyacrylamide

资金

  1. Social Development Fund of Guangdong Province [2017A020216018]
  2. Guangzhou Science and Technology Project [201904010319]
  3. Chongqing Science and Technology Commission of China [cstc2019jcyj-msxmX0647]
  4. Science and Technology Research Program of Chongqing Municipal Education Commission China [KJQN201801324]
  5. Foundation for High-level Talents of Chongqing University of Arts and Sciences, China [R2018CH11]

向作者/读者索取更多资源

A novel zinc based metal-organic framework and polyacrylamide coated on reduced graphene oxide was developed as an effective adsorbent for the removal of arsenite from water, showing rapid removal efficiency and high stability. The adsorption mechanism involves a synergistic combination of chemisorption and physisorption, with the amide and hydroxyl groups dominating in the adsorption process.
Contamination of drinking water with heavy metals, particularly arsenic (As), is a persistent problem with serious public health implications worldwide. In this study, we present a zinc based metal-organic framework (Zn-MOF-74) and polyacrylamide polymer (PAM) coated on reduced graphene oxide (rGO) as an effective adsorbent for the removal of arsenite (As(III)) from water. Zn-MOF-74 nanoparticles were prepared by room temperature precipitation and these were immobilized on rGO surface grafted PAM by a free-radical polymerization method, (Zn-MOF-74/rGO/PAM nanocomposites). The experimental data correlates well with the pseudo-second-order kinetic model and Langmuir isotherm, and the maximum adsorption capacity (q(max)) was 282.4 mg g(-1) at pH 10, 298 K. The removal efficiency was rapid, removing more than 99.8% of As(III) from a 0.2 mg L-1 solution and achieving drinkable levels in 15 min. Thermodynamic data revealed that the process was spontaneous and endothermic. Furthermore, the adsorbent revealed high stability in pH range 4-10 and could be reused at least four times. Adsorption mechanism involved a synergistic combination of chemisorption and physisorption. FTIR and XPS analyzes revealed that the amide group (-NH2) and hydroxyl group (-OH) on ZnMOF-74/rGO/PAM dominate in their adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据