4.7 Article

Quantifying soil-respired CO2 on the Chinese Loess Plateau

出版社

ELSEVIER
DOI: 10.1016/j.palaeo.2020.110158

关键词

Chinese Loess Plateau; S(z); Monitoring soil respiration; Last interglacial paleosol (S1)

向作者/读者索取更多资源

Soil respiration is crucial for understanding CO2 fluxes, with spatial S(z) variations mainly controlled by monsoonal precipitation. Monitoring work in higher precipitation areas is needed for better constraint of S(z) values.
Soil respiration is one of the dominant fluxes of CO2 from terrestrial ecosystems to the atmosphere. Accurate quantification of soil respiration is essential for robust projection of future climate variation and for reliable estimation of paleoatmospheric CO2 levels using soil carbonates. Soil-respired CO2, which is the most uncertain factor in estimating atmospheric CO2 concentration, has been calculated from modern observations of surface soils and from proxy indicators of paleosols formed during time periods of known atmospheric CO2. However, these estimations provide a wide range of S(z) values from past to present. To directly compare modern observation with past estimation, here we first monitored soil CO2 profiles in a Holocene profile on the western Chinese Loess Plateau (CLP) for two years, providing direct measurements of soil-respired (CO2 )at the depth where carbonate nodules likely formed. We then collected carbonate nodules below last interglacial paleosol (S1) from two N-S-aligned transects across the CLP to back-calculate soil-respired CO2. The mean back-calculated S(z) from S1 carbonate nodules vary from 539 +/- 87 ppm to 848 +/- 170 ppm in the sections on the northwestern and southeastern CLP, respectively. The mean value of directly measured soil-respired CO2 on the western CLP is 572 + 273 ppm before the onset of summer monsoon, consistent with the back-calculated S(z) in northwestern sections. Our results suggest that spatial S(z) variations are mainly controlled by monsoonal precipitation during the summer season on the CLP. To better constrain the high end of S(z), more monitoring work is needed in higher precipitation areas on the southeastern CLP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据