4.6 Article

High contrast cleavage detection for enhancing porous silicon sensor sensitivity

期刊

OPTICS EXPRESS
卷 29, 期 1, 页码 1-11

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.412469

关键词

-

类别

向作者/读者索取更多资源

The experimental implementation of the high contrast cleavage detection (HCCD) mechanism using porous silicon (PSi) interferometer sensors demonstrated significant optical signal amplification. Results showed a clear path to achieving real-time, highly sensitive readout for a broad range of biological diagnostic assays via nucleic acid cleavage triggered by specific molecular binding events.
Using porous silicon (PSi) interferometer sensors, we show the first experimental implementation of the high contrast cleavage detection (HCCD) mechanism. HCCD makes use of dramatic optical signal amplification caused by cleavage of high-contrast nanoparticle labeled reporters instead of the capture of low-index biological molecules. An approximately 2 nm reflectance peak shift was detected after cleavage of DNA-quantum dot reporters from the PSi surface via exposure to a 12.5 nM DNase enzyme solution. This signal change is 20 times greater than the resolution of the spectrometer used for the interferometric measurements, and the interferometric measurements agree with the response predicted by simulations and fluorescence measurements. These proof of principle experiments show a clear path to achieving a real-time, highly sensitive readout for a broad range of biological diagnostic assays that generate a signal via nucleic acid cleavage triggered by specific molecular binding events. (c) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据