4.6 Article

Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption

期刊

OPTICS EXPRESS
卷 28, 期 26, 页码 38626-38637

出版社

Optica Publishing Group
DOI: 10.1364/OE.414039

关键词

-

类别

资金

  1. National Natural Science Foundation of China [61871072]

向作者/读者索取更多资源

In this paper, we propose and demonstrate a switchable terahertz metamaterial absorber with broadband and multi-band absorption based on a simple configuration of graphene and vanadium dioxide (VO2). The switchable functional characteristics of the absorber can be achieved by changing the phase transition property of VO2. When VO2 is insulating, the device acts as a broadband absorber with absorbance greater than 90% under normal incidence from 1.06 THz to 2.58 THz. The broadband absorber exhibits excellent absorption performance under a wide range of incident and polarization angles for TE and TM polarizations. Moreover, the absorption bandwidth and intensity of the absorber can be dynamically adjusted by changing the Fermi energy level of graphene. When VO2 is in the conducting state, the designed metamaterial device acts as a multi-band absorber with absorption frequencies at 1 THz, 2.45 THz, and 2.82 THz. The multi-band absorption is achieved owing to the fundamental resonant modes of the graphene ring sheet, VO2 hollow ring patch, and coupling interaction between them. Moreover, the multi-band absorber is insensitive to polarization and incident angles for TE and TM polarizations, and the three resonance frequencies can be reconfigured by changing the Fermi energy level of graphene. Our designed device exhibits the merits of bi-functionality and a simple configuration, which is very attractive tbr potential terahertz applications such as intelligent attenuators, reflectors, and spatial modulators. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据