4.7 Article

Gradients of functional connectivity in the mouse cortex reflect neocortical evolution

期刊

NEUROIMAGE
卷 225, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2020.117528

关键词

Cortical gradient; Dual origin; Intrinsic functional organization; Mouse cortex; Resting-state functional connectivity

资金

  1. European Union [867458]
  2. Singapore BioImaging Consortium core funds
  3. Singapore BioImaging Consortium

向作者/读者索取更多资源

The study found robust spatial patterns of resting-state functional connectivity gradients in the mouse cortex, with the principal gradient showing a striking overlap with an axis of neocortical evolution from two primordial origins. Additional gradients reflect sensory specialization and aspects of a sensory-to-transmodal hierarchy, and are associated with transcriptomic features.
Understanding cortical organization is a fundamental goal of neuroscience that requires comparisons across species and modalities. Large-scale connectivity gradients have recently been introduced as a data-driven representation of the intrinsic organization of the cortex. We studied resting-state functional connectivity gradients in the mouse cortex and found robust spatial patterns across four data sets. The principal gradient of functional connectivity shows a striking overlap with an axis of neocortical evolution from two primordial origins. Additional gradients reflect sensory specialization and aspects of a sensory-to-transmodal hierarchy, and are associated with transcriptomic features. While some of these gradients strongly resemble observations in the human cortex, the overall pattern in the mouse cortex emphasizes the specialization of sensory areas over a global functional hierarchy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据