4.3 Article

AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair

期刊

DNA REPAIR
卷 43, 期 -, 页码 89-97

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2016.03.006

关键词

DNA demethylation; Base excision repair; DNA damage; DNA polymerase beta; AP endonuclease 1; CpG islands

资金

  1. National Institutes of Health [ES023569]

向作者/读者索取更多资源

Dynamics of DNA methylation and demethylation at CpG clusters are involved in gene regulation. CpG clusters have been identified as hot spots of mutagenesis because of their susceptibility to oxidative DNA damage. Damaged Cs and Gs at CpGs can disrupt a normal DNA methylation pattern through modulation of DNA methylation and demethylation, leading to mutations and deregulation of gene expression. DNA base excision repair (BER) plays a dual role of repairing oxidative DNA damage and mediating an active DNA demethylation pathway on CpG clusters through removal of a T/G mismatch resulting from deamination of a 5mC adjacent to a guanine that can be simultaneously damaged by oxidative stress. However, it remains unknown how BER processes clustered lesions in CpGs and what are the consequences from the repair of these lesions. In this study, we examined BER of an abasic lesion next to a DNA demethylation intermediate, the T/G mismatch in a CpG dinucleotide, and its effect on the integrity of CpGs. Surprisingly, we found that the abasic lesion completely abolished the activity of thymine DNA glycosylase (TDG) for removing the mismatched T. However, we found that APE1 could still efficiently incise the abasic lesion leaving a 3-terminus mismatched T, which was subsequently extended by pol beta. This in turn resulted in a C to T transition mutation. Interestingly, we also found that APE1 3'-5' exonuclease activity efficiently removed the mismatched T, thereby preventing pol 0 extension of the mismatched nucleotide and the resulting mutation. Our results demonstrate a crucial role of APE1 3'-5' exonuclease activity in combating mutations in CpG clusters caused by an intermediate of DNA demethylation during BER. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据