4.8 Article

A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells

期刊

NATURE NANOTECHNOLOGY
卷 16, 期 1, 页码 104-113

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41565-020-00793-0

关键词

-

向作者/读者索取更多资源

This study presents a nanoparticle-based strategy for killing CSCs in tumors by inducing CSC differentiation with all-trans retinoic acid release under hypoxic conditions and triggering cell death with camptothecin release in response to increasing reactive oxygen species levels in differentiating CSCs.
Tumour heterogeneity remains a major challenge in cancer therapy owing to the different susceptibility of cells to chemotherapy within a solid tumour. Cancer stem-like cells (CSCs), which reside in hypoxic tumour regions, are characterized by high tumourigenicity and chemoresistance and are often responsible for tumour progression and recurrence. Here we report a nanotherapeutic strategy to kill CSCs in tumours using nanoparticles that are co-loaded with the differentiation-inducing agent, all-trans retinoic acid, and the chemotherapeutic drug, camptothecin. All-trans retinoic acid is released under hypoxic conditions, leading to CSC differentiation in the hypoxic niche. In differentiating CSC, the reactive oxygen species levels increase, which then causes the release of camptothecin and subsequent cell death. This dual strategy enables controlled drug release in CSCs and reduces stemness-related drug resistance, enhancing the chemotherapeutic response. In breast tumour mouse models, treatment with the nanoparticles suppresses tumour growth and prevents post-surgical tumour relapse and metastasis. Chemoresistant cancer stem-like cells (CSCs) can be selectively killed by a nanoparticle, which releases an agent under hypoxic conditions that induces CSC differentiation, and a chemotherapeutic drug in response to reactive oxygen species in differentiating CSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据