4.6 Article

Inhaled multi-walled carbon nanotubes differently modulate global gene and protein expression in rat lungs

期刊

NANOTOXICOLOGY
卷 15, 期 2, 页码 238-256

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2020.1851418

关键词

Multi-walled carbon nanotubes; transcriptomics; proteomics; inhalation

资金

  1. European Commission through the EU [686098, 731032]

向作者/读者索取更多资源

Inhalation of multi-walled carbon nanotubes (MWCNTs) induces lung inflammation, with different morphologies of CNTs showing varying toxicological effects. Long-term exposure may result in persistent adverse effects.
Inhalation of multi-walled carbon nanotubes (MWCNTs) induces lung inflammation. Depending on industrial applications, CNTs with different physicochemical characteristics are produced and workers can potentially be exposed. This raises concerns about the long-term health effects of these nanomaterials. Because of the wide variety of MWCNTs, it is essential to study the toxicological effects of CNTs of various shapes and to better understand the impact physical and chemical properties have on their toxicity. In this study, rats were exposed by nose-only to two pristine MWCNTs with different morphologies: the long and thick NM-401 or the short and thin NM-403. After four weeks of inhalation, animals were euthanized at four different times during the recovery period: three days (short-term), 30 and 90 days (intermediate-term) and 180 days (long-term). Analyses of the transcriptome in the whole lung and the proteome in the bronchoalveolar lavage fluid of exposed animals were performed to understand the MWCNT underlying mechanisms of toxicity. Following inhalation of NM-401, we observed a dose-dependent increase in the number of differentially expressed genes and proteins, whereas there is no clear difference between the two concentrations of NM-403. After NM-403 inhalation, the number of differentially expressed genes and proteins varied less between the four post-exposure times compared to NM-401, which supports the postulation of a persistent effect of this type of CNT. Our toxicogenomics approaches give insights into the different toxicological profile following MWCNT exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据