4.6 Article

GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices

期刊

NANOTECHNOLOGY
卷 32, 期 13, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6528/abd0b4

关键词

quantum dots; surface passivation; spectral diffusion; photoluminescence; quantum-confined stark effect; surface states; GaAs (100)

资金

  1. Academy of Finland [310985, 323989, 320168]
  2. Walter Ahlstrom foundation
  3. Vilho, Yrjo and Kalle Vaisala Foundation of the Finnish Academy of Science and Letters
  4. Academy of Finland (AKA) [320168, 323989, 310985, 310985, 323989] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Several passivation techniques for close-to-surface InAs/GaAs quantum dots were compared for their ability to preserve optical properties. It was found that AlNx passivation method significantly reduces surface recombination velocity and shows long-term stability.
Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlOx and use of AlNx deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlOx process and more significantly by the AlNx method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlNx passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlNx passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by similar to 1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据