4.7 Article

Investigating the young AU Mic system with SPIRou: large-scale stellar magnetic field and close-in planet mass

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/staa3702

关键词

techniques: polarimetric; techniques: radial velocities; planets and satellites: formation; stars: imaging; stars: individual: AU Microscopii; stars: magnetic fields

资金

  1. European Research Council (ERC) under the H2020 research and innovation programme [740651]
  2. Agence Nationale de la Recherche (ANR) [ANR18-CE31-0019, ANR-15-IDEX-02]

向作者/读者索取更多资源

A study of the 22-million-year-old star AU Microscopii with 27 observations revealed a 8.46-day planet through spectroscopic and polarimetric analysis, showing mainly axisymmetric magnetic field and strong differential rotation effect.
We present a velocimetric and spectropolarimetric analysis of 27 observations of the 22-Myr M1 star AU Microscopii (AU Mic) collected with the high-resolution YJHK (0.98-2.35 mu m) spectropolarimeter SPIRou from 2019 September 18 to November 14. Our radial velocity (RV) time-series exhibits activity-induced fluctuations of 45 ms(-1) rms, similar to 3 times smaller than those measured in the optical domain, that we filter using Gaussian Process Regression. We report a 3.9 sigma detection of the recently discovered 8.46 -d transiting planet AUMic b, with an estimated mass of 17.1(-4.5)(+4.7) M-circle plus and a bulk density of 1.3 +/- 0.4 g cm(-3), inducing an RV signature of semi-amplitude K = 8.5(-2.2)(+2.3) ms(-1) in the spectrum of its host star. A consistent detection is independently obtained when we simultaneously image stellar surface inhomogeneities and estimate the planet parameters with Zeeman-Doppler imaging (ZDI). Using ZDI, we invert the time-series of unpolarized and circularly polarized spectra into surface brightness and large-scale magnetic maps. We find a mainly poloidal and axisymmetric field of 475 G, featuring, in particular, a dipole of 450G tilted at 19 degrees to the rotation axis. Moreover, we detect a strong differential rotation of d Omega = 0.167 +/- 0.009 rad d(-1) shearing the large-scale field, about twice stronger than that shearing the brightness distribution, suggesting that both observables probe different layers of the convective zone. Even though we caution that more RV measurements are needed to accurately pin down the planet mass, AUMic b already appears as a prime target for constraining planet formation models, studying the interactions with the surrounding debris disc, and characterizing its atmosphere with upcoming space- and ground-based missions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据