4.6 Article

Effect of Cation Structure in Quinolinium-Based Ionic Liquids on the Solubility in Aromatic Sulfur Compounds or Heptane: Thermodynamic Study on Phase Diagrams

期刊

MOLECULES
卷 25, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/molecules25235687

关键词

desulphurization of fuels; ionic liquids; phase diagrams; NRTL correlation

资金

  1. National Science Center (NCN) in Poland [UMO-2016/23/B/ST5/00145]

向作者/读者索取更多资源

Experimental and theoretical studies on thermodynamic properties of quinolinium-based ionic liquids (ILs) based on bis(trifluoromethylsulfonyl)imide anion (namely N-butyl-quinoloinium bis(trifluoromethylsulfonyl)imide, [BQuin][NTf2], N-hexylquinoloinium bis(trifluoromethyl-sulfonyl)imide, [HQuin][NTf2], and N-octylquinoloinium bis(trifluoromethyl-sulfonyl)imide, [OQuin][NTf2]) with aromatic sulfur compounds and heptane, as a model compound of fuel were examined in order to assess the applicability of the studied ionic liquids for desulfurization of fuels. With this aim, the temperature-composition phase diagrams of 13 binary mixtures composed of organic sulfur compounds (thiophene, benzothiophene, or 2-methylthiophene) or heptane and ionic liquid (IL) were investigated at ambient pressure. A dynamic method was used to determine the (solid-liquid) equilibrium phase diagrams in binary systems over a wide composition range and temperature range from T = 255.15 to 365.15 K up to the fusion temperature of ILs. The immiscibility gap with an upper critical solution temperature (UCST) was observed for each binary system under study. The influence of the alkane chain length of the substituent on the IL cation and of the sulfur compounds (the aromaticity of the solvent) was described. The experimental (solid + liquid) phase equilibrium dataset were successfully correlated using the well-known NRTL equation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据