4.7 Article

3D printed portable instruments based on affordable electronics, smartphones and open-source microcontrollers suitable for monitoring food quality

期刊

MICROCHEMICAL JOURNAL
卷 159, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.microc.2020.105584

关键词

Portable optical devices; Smartphone-based platforms; 3D printing; Open-source technology; Antioxidant analysis

向作者/读者索取更多资源

This investigation was carried out with the aim of stressing that technologically-advanced systems can be prototyped and produced by using 3D printing and inexpensive electronic modules. In particular, open-source technologies are opening new exciting possibilities also in the area of chemical analysis, thus making possible the assembly of customized analytical devices by using widely available and low cost materials. Here, two different field-portable optical analytical instruments, one operating in the transmittance mode and the other in reflectance mode, were built up by combining 3D printed parts with common hardware components, such as Arduino boards, LEDs and photoresistors. They were employed to analyze the antioxidant capacity of several tea infusions by profiting from the Folin-Ciocalteu assay. A performance comparable with that displayed by research-grade spectrophotometers indicates that these easy-to-operate and low-cost devices can provide accurate and precise results, thus demonstrating that highly-sensitive optical instrumentations, useful not only in research and education environments but also in resource-limited settings, can be readily constructed by a DIY (Do-It-Yourself) approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据