4.5 Article

Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity

期刊

MICROBIAL PATHOGENESIS
卷 149, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.micpath.2020.104561

关键词

Quorum sensing; Quorum quenching; Lactonase; Virulence; Pseudomonas aeruginosa; Burkholderia cepacia

资金

  1. Ministry of Education, Science and Technological Development, Republic of Serbia [451-03-68/2020-14/200042]

向作者/读者索取更多资源

Burkholderia cepacia is well known as the causative agent of infections in humans where often shares niche with other pathogens, like Pseudomonas aeruginosa. Clinical isolate Burkholderia sp. BCC4135 was selected due to its strong quorum quenching (QQ) activity. Whole genome sequencing unveiled this isolate as B. cepacia with unique sequence type ST1485 and a myriad of genes belonging to resistome and virulome. Two QQ lactonases YtnP and Y2-aiiA originated from B. cepacia BCC4135 were cloned, expressed, and functionally characterized. They were active against a broad substrate spectrum of the N-acyl-homoserine lactones (AHLs). The YtnP lactonase was inactive, while Y2-aiiA was active against N-tetradecanoyl-DL-homoserine lactone (C14-HSL) which could imply the difference in their biological roles from the aspect of its quorum sensing (QS) autoregulation and interference with the QS systems of bacteria residing within the same niche. Both YtnP and Y2-aiiA were able to attenuate virulence potential of P. aeruginosa MMA83 clinical isolate declining its biofilm formation and virulence factors production. B. cepacia BCC4135 lactonases interfered with the las, rhl, and even pqs QS circuit of P. aeruginosa MMA83 transcription and the effect of combined enzymes was even more prominent. B. cepacia BCC4135 also employs the CepI/R QS system for governing its own virulence traits and possibly self-regulates the QQ/QS network through the different expression and activity of YtnP and/or Y2-aiiA. Our findings pointed out that BCC4135 lactonases could be exploited as an effective antivirulence drugs against P. aeruginosa and gave us a new insight into B. cepacia QQ/QS machinery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据