4.7 Article

Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes

期刊

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.metabol.2020.154416

关键词

Mitochondrial proteomics; Type 2 diabetes; Human skeletal muscle biopsies; Mitochondrial dysfunction; Pioglitazone

资金

  1. Takeda
  2. University of Texas Health Science Center, San Antonio, TX, USA
  3. NIH [DK2409238]
  4. Fo.Ri.SID, Italy
  5. Minority Postdoctoral Fellowship from the American Diabetes Association

向作者/读者索取更多资源

This study aimed to identify the determinants of mitochondrial dysfunction in skeletal muscle of subjects with type 2 diabetes and evaluate the effect of pioglitazone on SKLM mitochondrial proteome. The results showed that T2DM is associated with reduced levels of mitochondrial proteins involved in oxidative phosphorylation and an increased abundance of enzymes implicated in fatty acid catabolism in SKLM. Treatment with pioglitazone improved the SKLM mitochondrial proteomic profile in subjects with T2DM.
Context: In this study, we aimed to identify the determinants of mitochondrial dysfunction in skeletal muscle (SKLM) of subjects with type 2 diabetes (T2DM), and to evaluate the effect of pioglitazone (PIO) on SKLM mitochondrial proteome. Methods: Two different groups of adults were studied. Group I consisted of 8 individualswith normal glucose tolerance (NGT) and 8 with T2DM, subjected to SKLM mitochondrial proteome analysis by 2D-gel electrophoresis followed by mass spectrometry-based protein identification. Group II included 24 individuals with NGT and 24 with T2DM, whose SKLM biopsies were subjected to immunoblot analysis. Of the 24 subjects with T2DM, 20 were randomized to receive placebo or PIO (15 mg daily) for 6 months. After 6 months of treatment, SKLM biopsy was repeated. Results: Mitochondrial proteomic analysis on Group I revealed that severalmitochondrial proteins involved in oxidative metabolism were differentially expressed between T2DM and NGT groups, with a downregulation of ATP synthase alpha chain (ATP5A), electron transfer flavoprotein alpha-subunit (ETFA), cytochrome c oxidase subunit VIb isoform 1 (CX6B1), pyruvate dehydrogenase protein X component (ODPX), dihydrolipoamide dehydrogenase (DLDH), dihydrolipoamide-S-succinyltransferase (DLST), and mitofilin, and an up-regulation of hydroxyacyl-CoA-dehydrogenase (HCDH), 3,2-trans-enoyl-CoA-isomerase (D3D2) and delta3,5-delta2,4-dienoyl-CoA-isomerase (ECH1) in T2DM as compared to NGT subjects. By immunoblot analysis on SKLM lysates obtained from Group II we confirmed that, in comparison to NGT subjects, those with T2DM exhibited lower protein levels of ATP5A (-30%, P = 0.006), ETFA (-50%, P = 0.02), CX6B1 (-30%, P = 0.03), key factors for ATP biosynthesis, and of the structural protein mitofilin (-30%, P = 0.01). T2DM was associated with a reduced abundance of the enzymes involved in the Krebs cycle DLST and ODPX (-20%, P <= 0.05) and increased levels of HCDH and ECH1, enzymes implicated in the fatty acid catabolism (+30%, P = 0.05). In subjects with type 2 diabetes treated with PIO for 6months we found a restored SKLM protein abundance of ATP5A, ETFA, CX6B1, and mitofilin. Moreover, protein levels of HCDH and ECH1 were reduced by -10% and - 15% respectively (P = 0.05 for both) after PIO treatment. Conclusion: Type 2 diabetes is associated with reduced levels of mitochondrial proteins involved in oxidative phosphorylation and an increased abundance of enzymes implicated in fatty acid catabolism in SKLM. PIO treatment is able to improve SKLM mitochondrial proteomic profile in subjects with T2DM. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据