4.7 Article

The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge

期刊

MEDICAL IMAGE ANALYSIS
卷 67, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.media.2020.101821

关键词

Semantic segmentation; Computed tomography; Kidney tumor

资金

  1. National Cancer Institute of the National Institutes of Health [R01CA225435]

向作者/读者索取更多资源

The anatomic and geometric characteristics of kidney tumors have significant impact on surgical and oncologic outcomes. Deep learning methods have shown promising results in automatic 3D segmentations, but there is still debate on the best approach. The KiTS19 challenge provided a platform for researchers worldwide to develop automated systems for kidney and tumor segmentation using a large dataset of CT images.
There is a large body of literature linking anatomic and geometric characteristics of kidney tumors to perioperative and oncologic outcomes. Semantic segmentation of these tumors and their host kidneys is a promising tool for quantitatively characterizing these lesions, but its adoption is limited due to the manual effort required to produce high-quality 3D segmentations of these structures. Recently, methods based on deep learning have shown excellent results in automatic 3D segmentation, but they require large datasets for training, and there remains little consensus on which methods perform best. The 2019 Kidney and Kidney Tumor Segmentation challenge (KiTS19) was a competition held in conjunction with the 2019 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) which sought to address these issues and stimulate progress on this automatic segmentation problem. A training set of 210 cross sectional CT images with kidney tumors was publicly released with corresponding semantic segmentation masks. 106 teams from five continents used this data to develop automated systems to predict the true segmentation masks on a test set of 90 CT images for which the corresponding ground truth segmentations were kept private. These predictions were scored and ranked according to their average Sorensen-Dice coefficient between the kidney and tumor across all 90 cases. The winning team achieved a Dice of 0.974 for kidney and 0.851 for tumor, approaching the inter-annotator performance on kidney (0.983) but falling short on tumor (0.923). This challenge has now entered an open leaderboard phase where it serves as a challenging benchmark in 3D semantic segmentation. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据