4.7 Article

Unbiased-estimation-based and computation-efficient adaptive MPC for four-wheel-independently-actuated electric vehicles

期刊

MECHANISM AND MACHINE THEORY
卷 154, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechmachtheory.2020.104100

关键词

Adaptive model predictive control; Autoregressive with exogenous input (ARX) model; Unbiased estimation; Yaw stability control

资金

  1. Ministry of Science and Technology of the People's Republic of China [2017YFB0103600]
  2. Beijing Municipal Science and Technology Commission via the Beijing Nova Program [Z201100006820007]

向作者/读者索取更多资源

In this paper, an adaptive model predictive control (AMPC) scheme with high computational efficiency is developed to improve the yaw stability for four-wheel-independently-actuated electric vehicles (FWIA EVs). A novel vehicle model is first established based on an autoregressive with exogenous input (ARX) model, which is independent of vehicle parameters and road conditions. The time-varying model parameters are identified by an unbiased estimation system via an instrumental variable (IV) method. The AMPC scheme is proposed based on the ARX vehicle model for direct yaw moment control (DYC). Then, a multi-objective optimization method is proposed to optimize torque allocation for yaw stability enhancement. Finally, the performance of the proposed scheme is verified under the double lane change and slalom maneuvers in Carsim. Simulation results show that the ARX-model-based unbiased estimation can effectively follow the reference while filtering out measurement noises. The yaw rate signal is smoother and the computational time is reduced by half under the proposed AMPC scheme in comparison to that under conventional dynamics-model-based MPC. In the meantime, the vehicle slip angle and the steering wheel angle are reduced, which indicates improved vehicle stability. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据