4.5 Article

A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory

期刊

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES
卷 29, 期 17, 页码 2521-2530

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15376494.2020.1870054

关键词

Buckling; couple stress; deflection; free vibration; Kirchhoff plate; microstructure; natural frequency; size effect; strain gradient

资金

  1. National Natural Science Foundation of China [11872149, 11472079]
  2. Fundamental Research Funds for the Central Universities [2242020R10027]

向作者/读者索取更多资源

A new microstructure-dependent non-classical model for Kirchhoff plates is developed by incorporating the strain gradient and couple stress effects. The model includes one material constant for the strain gradient effect and one material length scale parameter for the couple stress effect. The model is validated by solving buckling, static bending and free vibration problems of a simply supported rectangular plate. The results show that the microstructure effects lead to reduced plate deflections, increased critical buckling loads and higher natural frequencies.
A new microstructure-dependent non-classical model for Kirchhoff plates is developed by using a reformulated strain gradient elasticity theory that incorporates both the strain gradient and couple stress effects. The equation of motion and the boundary conditions are simultaneously obtained through a variational formulation based on Hamilton's principle. The new plate model contains one material constant to account for the strain gradient effect and one material length scale parameter to capture the couple stress effect. The newly developed non-classical plate model includes the plate model incorporating the couple stress effect alone and the plate model based on the classical elasticity as two special cases. To illustrate the new model, the buckling, static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulas derived. The numerical results reveal that the presence of the strain gradient and couple stress effects leads to reduced plate deflections, enlarged critical buckling loads and increased natural frequencies. These microstructure effects are significant when the plate is very thin, but they are diminishing as the plate thickness increases. These predicted trends of the size effects at the micron scale agree with those observed experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据