4.7 Article

The effect of Mn on the high temperature flow stress of Al-Mg-Si alloys

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2020.140605

关键词

Constituent particles; Dispersoids; High temperature deformation; Flow stress; Constitutive model

资金

  1. Canada Research Chair program
  2. Rio Tinto Aluminium
  3. NSERC (Canada)

向作者/读者索取更多资源

The study presents a new method to calculate the volume fraction of dispersoids in Al-Mg-Si alloys, increasing accuracy compared to traditional methods. A high temperature flow stress model based on dislocation theory was developed using experimental quantification of dispersoids, showing high accuracy in predicting flow stress.
The demand for Al-Mg-Si extrusion alloys in the transportation sector is increasing rapidly. An important aspect of the process is high temperature extrusion and in particular, the breakthrough force for the extrusion press. The breakthrough force varies as a function of the extrusion ratio, extrusion speed and temperature, the complexity of the profile and the flow stress of the alloy. Further, Mn and Cr are often added to the alloy which form dispersoids during homogenization which precipitation strengthen the alloy at high temperature. This work presents a new approach to calculate the volume fraction of dispersoids using electron microprobe analysis, electrical resistivity measurements and transmission electron microscopy (TEM). The new method substantially increases the accuracy of the volume fraction determination compared with traditional image analysis or TEM since the volume of material sampled is much larger avoiding effects of local segregation. Using the volume fraction and dispersoid size measurements, a high temperature flow stress model based on dislocation theory has been developed. It is shown to describe the high temperature flow stress measurements to within 5% in 95% of the cases. The model was validated by independent experimentation where it predicted the flow stress within 5% accuracy. The flow stress model can be used independently based on experimental quantification of the dispersoids or as part of a through process model which includes a KWN based precipitation model for dispersoids and then implemented as constitutive equation for a FEM based model of the extrusion process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据