4.3 Article

Laminin coated diamond electrodes for neural stimulation

出版社

ELSEVIER
DOI: 10.1016/j.msec.2020.111454

关键词

Diamond electrode; Laminin coating; Biocompatibility; Neural stimulation; Charge injection capacity

资金

  1. CASS Foundation
  2. National Health and Medical Research Council (NHMRC) of Australia [GNT1101717]
  3. Australian Research Council (ARC) [DP120103405]

向作者/读者索取更多资源

Coating electrodes with biomolecules like extracellular matrix proteins can suppress adverse biological responses and maintain optimal electrochemical performance for neural stimulation. The method of covalently coupling biomolecules to diamond electrodes enhances cell attachment densities and neurite outgrowth, showing promise in reducing inflammatory responses in vivo.
The performance of many implantable neural stimulation devices is degraded due to the loss of neurons around the electrodes by the body's natural biological responses to a foreign material. Coating of electrodes with biomolecules such as extracellular matrix proteins is one potential route to suppress the adverse responses that lead to loss of implant functionality. Concurrently, however, the electrochemical performance of the stimulating electrode must remain optimal to continue to safely provide sufficient charge for neural stimulation. We have previously found that oxygen plasma treated nitrogen included ultrananocrystalline diamond coated platinum electrodes exhibit superior charge injection capacity and electrochemical stability for neural stimulation (Sikder et al., 2019). To fabricate bioactive diamond electrodes, in this work, laminin, an extracellular matrix protein known to be involved in inter-neuron adhesion and recognition, was used as an example biomolecule. Here, laminin was covalently coupled to diamond electrodes. Electrochemical analysis found that the covalently coupled films were robust and resulted in minimal change to the charge injection capacity of diamond electrodes. The successful binding of laminin and its biological activity was further confirmed using primary rat cortical neuron cultures, and the coated electrodes showed enhanced cell attachment densities and neurite outgrowth. The method proposed in this work is versatile and adaptable to many other biomolecules for producing bioactive diamond electrodes, which are expected to show reduced the inflammatory responses in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据