4.6 Article

Controllable synthesis of LiFePO4 microrods and its superior electrochemical performance

期刊

MATERIALS LETTERS
卷 283, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.matlet.2020.128737

关键词

LiFePO4; Hydrothermal; Microrods; Microparticles; Discharge capacity

资金

  1. United Arab Emirates Space Agency, Space Missions' Science and Technology Directorate, United Arab Emirates [M04-2016-001]
  2. Korea-UAE Joint R&D Technical Center (KUTC) [8474000259]

向作者/读者索取更多资源

Lithium iron phosphate (LiFePO4) cathode materials were synthesized using a hydrothermal process, and the influence of particle growth on microstructural, thermal, mechanical, and electrochemical properties was discussed. Free-standing LiFePO4/MWCNT composite electrodes prepared using tape-casting technique exhibited high specific capacity and long cycle life.
Lithium iron phosphate (LiFePO4) cathode materials with microparticles (MPs) and microrods (MRs) for lithium-ion battery were synthesized through a hydrothermal process. The influence of controllable and uncontrollable growth of LiFePO4 (LFP) particles and its impact on microstructural, thermal, mechanical and electrochemical properties were discussed. Free-standing LiFePO4/multi-walled carbon nanotube (MWCNT) composite electrodes were prepared using a tape-casting technique and used for mechanical and electrochemical analysis. LFP-MR/MWCNT composite electrode exhibited a high specific capacity (similar to 192 mAh/g at 0.1 C) beyond the theoretical specific capacity of LiFePO4 (similar to 170 mAh/g at 1 C). Further, to evaluate the failure mode of battery, LFP-MR/MWCNTs composite electrode has been tested electrochemically up to 600 cycles at 10 C rate. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据