4.4 Article

Textile testing to assess the resistance to damage of long-lasting insecticidal nets for malaria control and prevention

期刊

MALARIA JOURNAL
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12936-020-03571-4

关键词

Long-lasting insecticidal mosquito nets; Snag test; Tear test; Abrasion resistance; Wounded bursting strength

资金

  1. Bill & Melinda Gates Foundation

向作者/读者索取更多资源

LLINs are susceptible to forming holes quickly during use, with mechanical damage being responsible for the majority. The resistance to damage varies based on fabric design specifications, rather than polymer type. A new suite of testing methods allows for assessment and specification of LLIN performance prior to distribution, establishing minimum performance standards.
BackgroundLLINs are susceptible to forming holes within a short time in use, compromising their ability to provide long-term physical protection against insect-borne vectors of disease. Mechanical damage is known to be responsible for the majority of holes, with most being the result of snagging, tearing, hole enlargement, abrasion and seam failure, which can readily occur during normal household use. To enable an assessment of the ability of LLINs to resist such damage prior to distribution, a new suite of testing methods was developed to reflect the main damage mechanisms encountered during normal use of LLINs.MethodsFour existing BS EN and ISO standards used by the textile industry were adapted to determine the ability of LLINs to resist the most common mechanisms of real-world damage experienced in the field. The new suite comprised tests for snag strength (BS 15,598:2008), bursting strength (ISO 13938-2:1999), hole enlargement resistance (BS 3423-38:1998), abrasion resistance (ISO 12947-1:1998) and new guidance around the seam construction of LLINs. Fourteen different LLINs were tested using the new suite of tests to evaluate their resistance to damage.ResultsThe resistance to mechanical damage of LLINs is not the same, even when the bursting strength values are comparable. Differences in performance between LLINs are directly related to the fabric design specifications, including the knitted structure and constituent yarns. The differences in performance do not primarily relate to what polymer type the LLIN is made from. LLINs made with a Marquisette knitted structure produced the highest snag strength and lowest hole enlargement values. By contrast, LLINs made with a traverse knitted structure exhibited low snag strength values when compared at the same mesh count.ConclusionsPrequalification of LLINs should consider not only insecticidal performance, but also inherent resistance to mechanical damage. This is critical to ensuring LLINs are fit for purpose prior to distribution, and are capable of remaining in good physical condition for longer. The new suite of test methods enables the performance of LLINs to be assessed and specified in advance of distribution and can be used to establish minimum performance standards. Implementation of these testing methods is therefore recommended.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据