4.7 Article

Relative role of T-tubules disruption and decreased SERCA2 on contractile dynamics of isolated rat ventricular myocytes

期刊

LIFE SCIENCES
卷 264, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2020.118700

关键词

Calcium release desynchronization; RyR2 sensitivity; Transverse tubules remodeling; Contractile dysfunction; SERCA2

资金

  1. CONACyT [265715]

向作者/读者索取更多资源

The disruption of T-tubules or decreased SR Ca2+ independently lead to altered Ca2+ transients and impaired contraction, showing the importance of reproducing disease-specific alterations for quantitative assessment of their impact on Ca2+ signaling and contractility.
Aims: Ventricular myocytes (VM) depolarization activates L-type Ca2+ channels (LCC) allowing Ca2+ influx (ICa) to synchronize sarcoplasmic reticulum (SR) Ca2+ release, via Ca2+-release channels (RyR2). The resulting whole-cell Ca2+ transient triggers contraction, while cytosolic Ca2+ removal by SR Ca2+ pump (SERCA2) and sarcolemmal Na+/Ca2+ exchanger (NCX) allows relaxation. In diseased hearts, extensive VM remodeling causes heterogeneous, blunted and slow Ca2+ transients. Among remodeling changes are: A) T-tubules disorganization. B) Diminished SERCA2 and low SR Ca2+. However, those often overlap, hindering their relative contribution to contractile dysfunction (CD). Furthermore, few studies have assessed their specific impact on the spatiotemporal Ca2+ transient properties and contractile dynamics simultaneously. Therefore, we sought to perform a quantitative comparison of how heterogeneous and slow Ca2+ transients, with different underlying determinants, affect contractile performance. Methods: We used two experimental models: A) formamide-induced acute detubulation, where VM retain functional RyR2 and SERCA2, but lack T-tubules-associated LCC and NCX. B) Intact VM from hypothyroid rats, presenting decreased SERCA2 and SR Ca2+, but maintained T-tubules. By confocal imaging of Fluo-4-loaded VM, under field-stimulation, simultaneously acquired Ca2+ transients and shortening, allowing direct correlations. Key findings: We found near-linear correlations among key parameters of altered Ca2+ transients, caused independently by T-tubules disruption or decreased SR Ca2+, and shortening and relaxation, Significance: Unrelated structural and molecular alterations converge in similarly abnormal Ca2+ transients and CD, highlighting the importance of independently reproduce disease-specific alterations, to quantitatively assess their impact on Ca2+ signaling and contractility, which would be valuable to determine potential disease-specific therapeutic targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据