4.7 Article

An automated classification method of thunderstorm and non-thunderstorm wind data based on a convolutional neural network

出版社

ELSEVIER
DOI: 10.1016/j.jweia.2020.104407

关键词

Thunderstorms; Extreme wind speeds; ASOS; 1D-CNN; Pattern recognition

向作者/读者索取更多资源

Historical wind data analysis is a key part of estimating design wind loads. Current design standards do not separately consider the wind loading effects by different wind hazard types. One reason for this lack of consideration is that the separation between thunderstorm and non-thunderstorm wind data is still an issue. A previous study about the Automated Surface Observing System (ASOS) provided a classification method of wind data as thunderstorm or non-thunderstorm based on thunderstorm 'flags' (Lombardo a al., 2009). However, this method relies mainly on manual or automated weather observations which are limited to a subset of stations worldwide. This paper first develops a revised wind hazard type recognition method based on a neural network. In this method, the historical wind data recorded is segmented in different time domains to be applied in a onedimensional convolutional neural network (1D-CNN) for an automated thunderstorm (T) or non-thunderstorm (NT) classification. Also, based on the trained 1D-CNN, a more comprehensive wind database can be extracted. The classification result from ASOS can automatically provide different peak wind speed for different wind hazard types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据