4.6 Article

Foot-and-Mouth Disease Virus Structural Protein VP1 Destroys the Stability of the TPL2 Trimer by Degradation of TPL2 To Evade Host Antiviral Immunity

期刊

JOURNAL OF VIROLOGY
卷 95, 期 7, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02149-20

关键词

FMDV; TPL2; VP1; trimer complex; immune escape; foot-and-mouth disease virus

类别

资金

  1. National Natural Science Foundation of China [31972684]

向作者/读者索取更多资源

This study reveals the antiviral effect of host TPL2 during FMDV replication in promoting interferons and antiviral cytokines. FMDV and VP1 protein reduce host TPL2, ABIN2, and p105 to disrupt the TPL2-p105-ABIN2 trimer complex, leading to repression of TPL2-mediated antivirus activity. Vice protein interacts with TPL2 and degrades it through the proteasome pathway, shedding light on FMDV evasion mechanisms against host antivirus responses.
Tumor progression locus 2 (TPL2) is a serine/threonine kinase that belongs to the mitogen-activated protein 3 kinase (MAP3K) family, and it plays an important role in pathogen infection. The trimer complex of TPL2, p105, and ABIN2 is essential for maintenance of TPL2 steady-state levels and host cell response to pathogens. Foot-and-mouth disease virus (FMDV) is a positive-strand RNA virus of the family Picornaviridae that encodes proteins capable of antagonizing host immune responses to achieve infection. The VP1 protein of FMDV is a multifunctional protein that can bind host cells and induce an immune response as well as cell apoptosis. However, the role and mechanisms of TPL2 in FMDV infection remain unknown. Here, we determined that FMDV infection could inhibit TPL2, p105, and ABIN2 at the transcription and protein levels, while VP1 could only inhibit TPL2, p105, and ABIN2 at the protein level. TPL2 inhibited the replication of FMDV in vivo and in vitro, and the 268- to 283-amino-acid region in the TPL2 kinase domain was essential for interaction with VP1. Moreover, VP1 promoted K48-linked polyubiquitination of TPL2 and degraded TPL2 by the proteasome pathway. However, VP1-induced degradation of p105 and ABIN2 was independent of proteasome, autophagy, lysosome, and caspase-dependent pathways. Further studies showed that VP1 destroyed the stability of the TPL2-p105-ABIN2 complex. Taken together, these results revealed that VP1 antagonized TPL2-meditated antivirus activity by degrading TPL2 and destroying its complex. These findings may contribute to understanding FMDV-host interactions and improving the development of a novel vaccine to prevent FMDV infection. IMPORTANCE Virus-host interactions are critical for virus infection. This study was the first to demonstrate the antiviral effect of host TPL2 during FMDV replication by increasing production of interferons and antiviral cytokines. Both FMDV and VP1 protein can reduce host TPL2, ABIN2, and p105 to destroy the TPL2-p105-ABIN2 trimer complex. VP1 interacted with TPL2 and degraded TPL2 via the proteasome pathway to repress TPL2-mediated antivirus activity. This study provided new insights into FMDV immune evasion mechanisms, elucidating new information regarding FMDV counteraction of host antivirus activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据